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Absh~ct. We propose a version of the sell-consislent approach to the loca1mtion pheno- 
mena, constructed according to the following scheme. We formulale some gener31 require- 
menfs lor the xcond moment olthe Green function. Then we find the ‘simplest’ expression 
that satisfies all these requirements. Such an expression is not unique ofcourx, but we shou 
!hat it provides quite a reasonable dercnption 01 the Andenon transition. 

The problems of the localization of states in disordered solids and the resulting kinetics 
are among the most important in solid state theory. This problem is fairly difficult, and 
reliable results are known only for one-dimensional systems and for large or small 
disorder in the multidimensional case [ H I .  As a result, in the last few years a variety 
of self-consistent approaches have been proposed which allow one to consider, at least 
qualitatively, the case of intermediate disorder and to describe in particular the 
metal-insulator (Anderson) transition in three-dimensional systems and the com- 
plete localization in low-dimensional (d = 1,2) systems (see, e.g., [5-71). In spite of 
different initial prerequisites, these approaches result in essentially the same equation 
which provides a fairly reasonable description of the Anderson transition (the respective 
results are in good agreement with the exact one-dimensional calculation and with the 
computer simulations). 

However, the procedure for the construction of self-consistent approaches in the 
theory of disordered systems is much less ambiguous than in the theories of critical 
phenomena. This is why all such approaches use hardly controllable hypotheses and 
approximations. It is natural therefore to make further attempts to find more convincing 
arguments which clarify and justify at least partially the procedure of the derivation of 
the self-consistent equation for the diffusion coefficient. The present paper is devoted 
tosuchanattempt. Weconsiderthedoublecorrelator(thesecondmoment)ofthe Green 
function and formulate some requirements which follow from the general principles and 
the modern state of art of the theory of disordered systems. Then we consider the 
‘simplest’ expression for the correlator compatible with these requirements. Such an 
expression is not unique of course, but we show that it can be written in a form that 
gives in essence the same self-consistent equations that were found earlier [5-71. 

As a byproduct of our scheme we can find other kinetic coefficients and obtain more 
detailed information on the nature of the Anderson transition. In particular we fmd that 
the short-range part of the double correlator is a singular function of frequency o in the 
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localization regime. Therefore one may expect the small-distance behaviour of the 
correlator to be also important to the understanding of the nature of localization. 

Now we shall list and briefly discuss our requirements on the double correlator 
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&,(r13r*lr3, r 3  = ( G ~ ~ , / 2 + d r i ,  r3)G~-,iz- ,dr2~ r4)) (1) 

where GE(r, r') is the exact Green function of an electron in the random potential and 
thesymbol(. . .)denotesaveragingoverthispotential. Weshall use the Andersonmodel 
on a simple hypercubic lattice. 

In what follows it is more convenient to consider the Fourier transform of (1): 

@ P , ( ~ I ,  k , lkh  k4) 
= W 2  2 K,,,(ri, r21r3, r4)exp[i(-klr, - k2r2 + k3r3 + k4r4)] (2) 

r, ,r2. ,3. ,4 

where N is a number of lattice sites. In view of the spatial homogeneity in the mean (see 
[l]) this function contains A(kj  + kz  - k 3  - k4)  where A ( k )  is the Kronecker symbol. 

(i) Cross symmetry. 

~,(k,,k,)k,,k4)=@,,(-k3.kzl -ki7k4), (3) 

This condition is a consequence of the time-reversal symmetry of the problem resulting 
in the real-valuedness of the wavefunctions in the coordinate representation. Relation 
(3) was used earlier for the construction of self-consistent approaches (see, e.g., 161). It 
can be easily proved by using the eigenfunction expansion of the Green function in the 
coordinate representation. 

(ii) The Hilbert identity. 

a-'  Im GE-,a = C E + , a C E - a a .  (4) 

Conditions (3) and (4) yield the following relations for the correlator (2): 

Here A G ( p )  = ( G E - , ~ - i o ( p ) )  - (GEt,/2+io(p))and ( G ( p ) )  is the Fourier transform of 
the mean Green function. 

(iii) The principle of vanishing of the correlations. According to this principle there 
are no statistical correlations between infinitely distant points [I]. 

This principle implies that 

or 

Q ~ , ( P ,  kip, k )  = (G;Etau/2t~(~))(G;~-oj2-io(k)). (7) 

Requirements (i)-(iii) are the consequences of fairly general principles. We for- 
mulate now one more requirement which has been widely used in recent years. 
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(iv) Thepresenceof the diffusionpole in correlator (2 ) .  This requirement determines 
the asymptotic behaviour (the singular part) of correlator (2) for small w and q = 
kl - k4 = k, - k3 and has the form 

Q w ( k l ,  k , /k3 ,  k4) - ( - io  + Dq2)-’  (8) . 
a.9-0  

where the quantity D coincides with the full diffusion coefficient at zero temperature 
and depends, generally speaking, on the energy E .  

Denote by S ( q )  the Fourier transform of the density-density correlator: 

Then form (8) of the singular part of Qa(k, ,  k,l k3,  k,) may be considered as a natural 
form provided that the asymptotic expression 

which for small w and q follows from the fairly general phenomenological arguments 
(herep(E) is the exact densityof states defined as K’ Im(GE+iO(O, 0))). The asymptotic 
relation (8) with D replaced by the ‘bare’ diffusion constant Do, given by the classical 
kinetic theory, follows also from the weak-disorder perturbation theory after summing 
of so-called ‘ladder’ diagrams [8, 91. This relation is implied also by the exact Einstein 
relation [lo] 

D = [4np(E)]-’  lim [w2 a2S(q)/aq’]. 

Besides, asymptotic (8) is the simplest (but, of course, not unique) form of thecorrelator 
compatible with the exact sum rule 

S(q)  = 2np(E)/(-iw + Dq2) 

0.9-0 

lim {Re[S(q)]} = 2nzp(E)S(w)  + A(w). 
0’ 0 

Here A(w)  = Z(a/aE)(Re (GE+iO(O, 0))) + O(w2) is obviously non-singular for small 

Relation (8) describes the ‘diffusion’spreadingof the 6-function singularity for small 

To describe by the same formula the behaviour of correlator (2) in the localization 

W. 

q and seems very natural and useful in the delocalization region of energies. 

region, we assume, based on phenomenological arguments [6], that in this region 

where 01 is the polarizability that may depend on the energy. 
Therefore, we suppose that the functional form (8) for small wand q is valid in the 

wzhole energy range, but in the tocalization region D has the form (9) ,  where (Y depends 
on E and tends to infinity when E approaches the mobility edge E,. 

Let us consider now to what extent requirements (i)-(iv) determine the correlator. 
Weassume forsimplicity that the random potential is the Gaussian uncorrelated random 
function 

D(w)  = -iwn (9) 

0 

W r ) )  = 0 (U(r)U(r‘))  = UZgA(r - r‘)  
where A(r - r’) is the Kronecker symbol. According to the Kubo formula [ll] the 
diffusion coefficient in this case is 

D(w) = P n d p ( E ) W ’  2 u(rlr r&(rz, r 3 P o ( r ~ ,  r h ,  rd (10) 
,I.r2.,3,,4 

where u(rl ,  r2) = iJ&6A(rl - r2 - 6 )  is the matrix element of the velocity operator, J 
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is the hopping amplitude of the Anderson model, 6 is the nearest-neighbour vector and 
d is the dimensionality of the lattice. 

Our starting point will be the expression for correlator (2) given by the simplest 
version of the perturbation theory, the so-called 'ladder' approximation [E, 9,121: 

Q m h  kzlk3, k4) = M , ( k i ,  kz)[A(ki  - k,)A(k,  - k4) 

t- ( l /N)Nki  - k3 + kz - kJMm(k3, k W ' ( q ) l  (11) 
where 

q = k l  -k4  
1 

(G;E+~/z+ io (ki))(GE- m/2 -m (k2)) 
[ E  - E(k) 2 r&' 

P(q)  = (I; - i z  M , ( p  - ; , p  + 4) 
P 

MO, ( k i ,  kz)  

( G E = a o ( k ) )  

E(k) = J(y0 - yk) Yk = 2 exp(ik6) ro = k U : p ( E )  
b 

p ( E )  = ( 2 ~ W ' r o  xl(G&4)lz. 
x 

In particular the function P ( k )  in (11) for small k is 
P ( k )  = 2xp(E)r;2[-iw + Do(yo - yk)/a2] 

Do = 7 / F o d  
where Q is the lattice constant and 

is the classical diffusion coefficient in which 

7= (E k 0 2 ( k ) M , ( k , k ) ) ( x  k M , ( k , k ) ) - '  

(14) 

(15) 

is the mean square of the electron velocity. 
In view of (S), one may try to use expressions (11)-(15) with Do replaced by D as 

the simplest form of the correlator. This expression, however, does not satisfy (3) and 
satisfies only sum rules (5a) but not (56). Also, by inserting (11)-(15) into (lo), we can 
find that the diffusion pole doesnot give the contribution to the resultingexpression for 
the diffusion coefficient which will coincide in thiscase with the classical coefficient (15). 
The alternative approximation, based on the summing of so-called 'fan' (maximally 
crossed) diagrams gives for the correlator (2) the samebexpressions (11)-(14) in which 
q = k ,  - k4 = k z  -k3  is replaced by Q = k ,  + kl = k3 + k +  This expression, as (11)- 
(14), does not satisfy (3) and satisfies only (56) but not (5a). However, this expression, 
ifinsertedinto( lO),givesthewell knownquantumcorrectionfor thediffusioncoefficient 

Thusneitherof thesetwoexpressionsissymmetricwithrespect to thechangeq - Q, 
i.e. neither satisfies requirement (i) following from the time reflection symmetry of the 
problem. To satisfy this important requirement, it is natural to replace P-' (q)  in (11) 
by the following 'interpolating' expression: 

D(w)  [3,41. 

Tm(k,,kzIk3,k4) = P - ' ( q )  + p- ' (Q) + gm(ki ,kz/k3,  k4) (16) 
where the function g,(kl ,  kz lk3,  k 4 )  satisfies condition (i) and has no singularities for 
small 0, q and Q. 
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A particle interaction, a time-depending random potential, a magnetic field, etc, 
break the discussed symmetry and, as a result, (16) cannot be used in these cases. The 
simplest way to take into account this ‘symmetry breaking’ is to replace w by w + iI‘, 
where I’ > 0. This replacement is implied by the Kramers-Kronig relation (according 
to which even and odd powers of w should have imaginary and real coefficients, respect- 
ively) and by thecausalityprinciple (accordingto which r > 0). Also, analogous replace- 
ment was found for quasi-one-dimensional electrons interacting with a random poten- 
tial and three-dimensional phonons (see [13,14]) and is exact in any dimensionality if 
the time-dependent part of a random potential is independent of the coordinates and 
is 6 correlated. 

Returning to the discussion of the form of the function g,(kl, kzlk, ,  k,) of (16) we 
note first that even the simplest choice g = constant allows us to satisfy the relation 

which is the consequence of (5). Further, inserting the respective expression into (lo), 
we find, according to [15], that the resultingself-consistent equation for the full diffusion 
coefficient D has no physical solutions ford = 1.2, and ford = 3 the solution exists only 
if To in (12) is small enough. 

Thus we should modify our ansatz (16) with the constantg. We note that the first two 
terms in (16) are responsible for the large-distance behaviour of the correlator (1) 
(diffusion spreading of the wave packet according to condition (iv)), while the function 
g is responsible for the small-distance behaviour of (1). We correct this behaviour in the 
simplest way, assumingthat the correction isdetermined by the first coordination sphere 
and depends only on the ‘essential’ variables q and Q. Then, taking into account the 
cubic symmetry of our problem, we obtain 

gw = c(Yq + YQ) + cl. (18) 

Since in the small-disorder limit we should have the known weak-localization 
formulae for the quantum corrections [3,4] we should assume that C-t 0 when 
D-t  Do. The simplest form of C which guarantees this property is 

c = CZ(1 - D/Do). (19) 

Let us find the coefficients C,  and C,. The first equation for them follows from (17)- 
(19): 

-2 

= ( ~ M , ( p , k ) M , ( k , p ) P , l ( p +  p . k  k ) ) ( C M W )  k . (20) 

To derive the second equation, assume that D is small (i.e. that the energy lieseither in 
the delocalized neighbourhood of the mobility edge Ec, where D --.f 0 as E+ E, or in 
the localized region where, according to (9), D -t 0 as w -t 0). Then the left-hand side 
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of (10) has the singularity of the form 1/D due to the second term of (16). We choose 
the coefficient C, so that this singularity is absent: 

T N Antsygina et a1 

We emphasize that we impose this requirement for all energies and frequencies and not 
only for E-, E, or w -t 0, when D is small. 

Thus, we have constructed the double correlator (2). It is given by formulae (11)- 
(13) in which P;’(q)  is replaced by (16). (18)-(21). 

It is worth noting that our correlator satisfies one more important and natural 
requirement. Namely, define the density of localized statesp,(E) by the relation [I] 

where W”(r) are the exact localized eigenfunctions of the Anderson model. According 
to the widely accepted point of view, we assume that 

(a) localized and delocalized states cannot coexist in the same energy region and 
(b) in the neighbourhood of the mobility edge E, the full density of states is strictly 

Then, assuming for definiteness that the localized region corresponds to E < Ec, we 

positive and continuous (has no jumps) [16]. 

get 

PI(& - 0) = ~ d & )  > 0 

PI(& - 0) - Pi(& + 0) = Pi(&) > 0. 
PI(E + 0) 0 

(23) 

Let us show that our correlator satisfies automatically ielations (23). Indeed, we can 
rewrite (22) in the form [l] 

~W’I(E) = w--o lim ( r w(GE,0~to(O,r)GE-.,z-ju(r,o))) 

or after the Fourier transformation 

Now, by using ( l l ) ,  (14), (16), (18) and (ZO), settingp = 0, w = 0 in the non-singular 
terms and taking into account equation (13) for the density of states, we find that 

Since, for E > E<, D may depend only on E but not on w ,  the last equation implies that 
p l ( E )  = 0 there. On the other hand, if E < Ec, D is given by equation (9), which 
implies that pt(E) = p(E)  there. Thus, the rather non-trivial looking relations (23) are 
provided by a fairly simple mathematical mechanism. 

Now we shall derive the self-consistent equation for the diffusion coefficient and 
analyse its solution. We insert the constructed correlator @, into the Kubo formula 
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(10). Since this correlator contains D explicitly (see (16) and (18)-(21)), we obtain 
after some calculations the self-consistent equation for D: 

where q = D/Do, J* = Do/a2, 

The form of this equation is reminiscent of the equation for the ferromagnetic order 
parameter in the spherical model or in the approximation of Bogolyubov andTyablikov 
[17], when the density of states of the spin waves is taken in the Rayleigh-Jeans form. 
In our case the roles of the order parameter, the external field and the temperature are 
played by q ,  iw and 8, respectively; the metal-insulator transition corresponds to the 
phase transition from the ferromagnetic (ordered) state to the paramagnetic state. An 
analogous equation appears in the theory of the ideal Bose gas. There 1 - q corresponds 
to the density of the condensate and iw/q corresponds to the chemical potential. Both 
analogies, however, are somewhat formal, because the analogues of the external field 
and chemical potential are imaginary. However, if we introduce damping, i.e. make the 
change w -+ w + ir, and set w = 0 afterwards, the analogy will become more complete. 

Equations (24) for w/J* < 1 takes a simpler form: 

q = E  - [bd/sin(nd/2)]R2-d 2 < d S 4  (254  

q = 1 - (8/2nJ*) In(R/a) d = 2  (256) 

q = 1 - [bd/sin(nd/2)JR2-d l s d < 2  W C )  

E = 1 - WO/zJ* R = (iqDo/w)-'12 bd = &l-d/Zad-2 / J  2 d T(d/2). 

W is the Watson integral [I81 and z is the coordination number. The quantity E in ( E a )  
can be considered as a measure of the proximity to the mobility edge and R has the 
meaning ofthe IocalizationradiusifE < E,andofthecharacteristic diffusion path length 
of the particle during the period of the external field if E > E, (after the above change 
w-+iT). 

The solutions (256) and (Zsc), respectively, are as follows: 

D = npyDo[-iwexp(l/A) + npoZexp(2/A)] h = a2 U;/& d = 2  

D = 4Do[-iwt + ~ ( W Z ) ~ ]  z=r - l  d = l .  
These expressions coincide with the results [6],  if the quadratic dispersion law is used. 

w-+ wL-d E+ E L 2 - d  q -+ vL2-d R-RL. (26) 
Thus, according to (=a), the critical indices s and v ,  defined by the relations D - 6, 
R - E-" , are equal (for 2 < d s 4) to units and l/(d - 2), respectively, and coincide 
with those found in [19,20]. 

The quantity g = qRd-' which is invariant with respect to the transformation (26) 
satisfies the equation 

A similar equation, i.e. a similar form of the Gell-Mann function, was found in [21] for 

Equation ( E a )  ford > 2 is invariant with respect to the change of scales 

d(lng)/d(ln R) = (d - 2)Ul + {bd/[gsin(nd/2)]}]. 



6130 

the conductance of the sample in the case of weak disorder. However, the argument of 
the respective equation in [21] is the sample size L and not the ‘correlation’ length R .  

We note in conclusion that equation (2%) ford = 3 can be written in the form 

T N Antsygina et a1 

v3 - Et) - h = 0 (27) 
where v2 = qandh = (8/4~J*)(-io/J*)’’*.Thisequation issimilar tothat fortheorder 
parameter in the phenomenological theory of phase transitions. The quantity h is the 
analogue of the external field and E is the analogue of T - T,. Also the diffusion 
coefficient is related to the ‘order parameter’ in the same way as the supertluid (or 
superconductor) density. The localized and delocalized phases correspond to the 
normal and superfluid (or superconductor) phases, respectively. 
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